	Title	Writer name	No.	Page
巻頭言	Connected Industries の構築に向けて	石塚博昭	1	6
	ゲノミクスから真のデータ駆動型バイオサイエンスへ	田畑哲之	2	108
	バイオエコノミー時代を切り拓け	上村昌博	3	214
	イノベーションから安全な技術の浸透へ	辰巳 敬	4	292
	博士を大切に	吉田 稔	5	352
	科学を「文化」として根付かせる	高木昌宏	6	434
目でみる バ イ オ	高速原子間力顕微鏡で生きた細胞表面の動態を見る	吉田藍子・鈴木勇輝・ 吉村成弘	1	8
	オルガネラから臓器までの pH を可視化する	花岡健二郎	1	10
	植物におけるカルシウム/グルタミン酸のリアルタイムイメージング	豊田正嗣	2	110
	光を感知して色が変わるシアノバクテリオクロム	伏見圭司・成川 礼	6	436
	バイオテクノロジーで幻の黄色いアサガオを再現する	星野 敦	6	438
総 説	認知症の病態形成と進行機構	長谷川成人	5	354
解 説	超好熱アーキアの新規 UDP-GalNAc 生合成経路	河原林裕	1	12
	細胞のラマンスペクトルから遺伝子発現プロファイルを推定する新手法	亀井健一郎・小林鉱石・ 中岡秀憲・若本祐一	1	17
	下水汚泥を資源としたメタン生成促進	前田憲成	1	22
	酵母におけるオルガネラ間のステロール輸送機構	福田良一	1	28
	水溶性シトクロム P450 を固定化酵素として利用するために	平川秀彦	1	32
	生きたままで生体内 pH を測定できる蛍光色素の開発	花岡健二郎	1	37
	ソルガムの茎糖液含量を規定する遺伝子	藤本 優・佐塚隆志・ 米丸淳一・堤 伸浩	2	112
	硝酸に応答して根粒共生を制御する植物の転写因子	西田帆那・寿崎拓哉	3	216
	バクテリアのコロニー形成の遺伝学事始め	正木春彦・納庄一樹	3	221
	GONAD 法:胚の体外操作を要しない新規ゲノム編集動物作製法	大塚正人	3	226
	バイオエコノミーに向けた植物細胞壁エンジニアリング	光田展隆	3	230
	芋焼酎粕を用いた微生物燃料電池の開発	井上謙吾	4	294
	"魔女の雑草"寄生植物ストライガの撲滅に向けた自殺発芽剤の 開発	土屋雄一朗	4	299
	ポリエチレンテレフタレート(PET)分解酵素の特性とプラスチックリサイクルへの展望	河合富佐子・織田昌幸	5	360
	軽くて丈夫なミノムシシルクの強靭さの秘密	吉岡太陽・亀田恒徳	5	364
	エゾムラサキツツジの抗 HIV 成分ダウリクロメン酸の生合成経路解明と微生物生産	田浦太志・飯島未宇	5	368
	バイオマス変換に向けたリグニンとその親和性分子における相 互作用解析	渡辺隆司・德永有希	5	373
	ガソリンの微生物生産に向けた合成生物学的アプローチ	湯澤 賢	6	440
	植物科学から麻酔薬の作用機序に迫る	蔭西知子・陽川 憲	6	444

	Title	Writer name	No.	Page
解 説	海洋微生物における多価不飽和脂肪酸生合成酵素の解析と応用	林 祥平・佐藤康治・ 小笠原泰志・大利 徹	6	448
	天然培地成分の網羅的分析による微生物培養予測	小西正朗	6	453
トピックス	第3のロドプシン:ヘリオロドプシンの発見	井上圭一・神取秀樹	1	42
	酵母のマルトース資化性をつかさどる遺伝子 MAL73 の同定	大舘 巧・畠中治代・ 大村文彦・小埜栄一郎	1	44
	デコイ分子を用いたベンゼンからフェノールへの微生物変換	唐澤昌之・荘司長三	1	46
	高速 AFM によるエンドサイトーシス膜変形過程のライブセルイメージング	吉田藍子・鈴木勇輝・ 吉村成弘	1	48
	フラボノイド配糖体から二糖を遊離させる糸状菌由来加水分解 酵素	小関卓也	1	51
	廃水中の難分解性 1, 4-ジオキサンを分解する未知微生物群の動態	青柳 智・羽部 浩・ 尾形 敦・堀 知行	1	53
	精密ろ過膜を通り抜ける「ろ過性細菌」	中井亮佑	1	56
	腸内細菌叢による「ハイブリッド・ポリアミン生合成機構」	松本光晴	1	58
	糖リン酸の精密計測が明らかにする中心代謝フラックス	岡橋伸幸・松田史生	2	116
	抗生物質生合成を司るピロロキノリンキノン要求性デヒドロゲ ナーゼ	原 圭佑・鈴木敏弘・ 荒川賢治	2	119
	ホップの苦み成分がビールの泡持ちを向上させる	宮前孝行	2	122
	カンツバキ花の匂い成分バレリアノールはお茶の未知香気成分でもあった	八反順一郎・三沢典彦	2	124
	漢方薬の効能を予測するアルゴリズム/データベースの開発	山西芳裕・門脇 真	2	126
	グルコース抑制を受けずに油脂を生産する新種酵母	谷村あゆみ・高島昌子	2	128
	細胞内 ATP の同時計測を可能にする 3 色の蛍光センサー	新井 敏・北口哲也	2	130
	がん治療を目指した新規な二重二価抗体(BiBian)の開発	梅津光央	2	132
	グルタミン酸はカルシウムシグナルを介して植物の全身性傷害 防御を引き起こす	豊田正嗣	2	134
	糸状菌による植物ホルモンアブシジン酸の生合成・新奇な環化 酵素の発見	南 篤志・尾﨑太郎・ 劉 成偉・及川英秋	2	136
	長期高濃度エタノールストレスで生じる酵母の小型セプチンリ ング	穂本聖奈・井沢真吾	3	233
	腸内細菌による酪酸の産生を特異的に高める難消化性糖質	佐藤 直	3	236
	酢酸菌の経□摂取がアルコール代謝に及ぼす影響	清野慧至・奥山洋平	3	238
	植物の匂い物質を利用した病虫害防除技術	有村源一郎	3	240
	腸内細菌由来 D-セリンによる腎保護作用	中出祐介・岩田恭宜・ 和田隆志	3	242
	組織傷害の修復期に出現する免疫制御性単球の機能と起源	田中正人	3	244
	糖への欲求を意識せずに抑えるメカニズム	佐々木努	3	246
	L型アミノ酸オキシダーゼの多面的な役割と新規免疫療法への期待	山室友紀・永岡謙太郎	3	248
	青い花実現に道を開くネモフィラのフラボン糖転移酵素の同定	興津奈央子	3	250
	樹状細胞を活性化するミトコンドリア代謝の新たな仕組みの発見	後藤和人・康 東天	4	304
	バクテリアが有する新たな非リボソームペプチド環化酵素	松田研一・脇本敏幸	4	306

	Title	Writer name	No.	Page
トピックス	高速ラマン分光法を利用した細胞個性の無標識・大規模計測	平松光太郎・合田圭介	4	308
	ネムリユスリカの培養細胞の乾燥耐性に迫る	山田貴大・舟橋 啓・ 黄川田隆洋	4	310
	糖質加水分解酵素の機能改変による新規糖鎖合成法の開発	大沼貴之・田中知成・ 深溝 慶	4	312
	腸内細菌が産生する乳酸・ピルビン酸が免疫を活性化するメカ ニズム	森田直樹・竹田 潔	4	314
	異なる反応を同一活性部位が触媒する環状イミン分解酵素	永久保利紀・熊野匠人・ 小林達彦	4	317
	抗生物質ホスホマイシン生合成経路の全貌解明	佐藤秀亮・工藤史貴・ 江口 正	5	378
	シリカを誘導剤とする異種タンパク質発現システム	藤野泰寛・土居克実	5	380
	デジタルアッセイによるインフルエンザウイルスの超高感度検 出法の開発	田端和仁	5	382
	低濃度 Tetra-PEG ハイドロゲルの医療応用	酒井崇匡・増井公祐	5	384
	みどりの香り生成に関わる還元酵素の同定	松井健二	5	386
	iPS 細胞由来抗がん CD8T 細胞による再生免疫療法	南川淳隆	5	388
	細胞表層提示酵母を利用したクラフトパルプからのキシリトー ル生産	番場崇弘・猪熊健太郎・ Gregory Guirimand・ 蓮沼誠久	5	390
	梅酒の伝統製法を判別する安定同位体比分析	赤松史一・大江孝明	6	456
	糸状菌由来 新規 β -1,2-グルカナーゼの構造と機能	田中信清・中島将博・ 田口速男	6	458
	細胞膜透過性ペプチドを用いた大腸菌細胞内への巨大 DNA 導入法	小田原真樹・沼田圭司	6	460
	麹菌糖質分解酵素の協調作用によるキシログルカンオリゴ糖の 分解	松沢智彦	6	462
	フラボノイド代謝工学で咲いた幻の黄色いアサガオ	星野 敦	6	464
	アフリカ睡眠病薬アスコフラノンの生合成経路解明による高生産系の構築	荒木康子・淡川孝義・ 松崎素道・阿部郁朗	6	466
	光エネルギーを利用して ATP を生産し自分のパーツをつくる人 工細胞	車 兪澈	6	469
	哺乳類内在性色素を結合するシアノバクテリオクロム	成川 礼・伏見圭司	6	472
	3 つの不斉中心を同時制御可能なカルボニル還元酵素の開発	日比 慎・宮川拓也・ 田之倉優・小川 順	6	475
	機械学習を活用したペプチドー受容体ペアの予測と実証	佐竹 炎・白石 慧	6	478
バイオの窓	"アラン・ドロン"になりたい	中村 聡	1	68
	人間は微生物を超えることができるのか	柴田 孝	2	139
	失敗やまわり道と人生百年時代のコスパとチャンス	藤井 力	4	320
産業と	教育研究の現場から国立大学の現状を憂う	横田 篤	1	69
行政	地域産業支援機関の活動② 北海道のバイオ産業 ~更なる成長 へ向けて~	工藤昌史	1	74

	Title	Writer name	No.	Page
産業と 行政	国内製薬メーカーのアライアンス分析(続報) ~製薬メーカー と創薬バイオベンチャーとのアライアンスの詳細分析~	鈴木伸之	2	158
	地域産業支援機関の活動③ (公財)沖縄県産業振興公社の取組み	上原聡志	2	163
	バイオジェット燃料の開発動向・課題	伊原智人・冨山俊男	2	166
	米国、EU、日本における遺伝子組換え微生物を利用して製造された食品・食品添加物の規制	Nigel Baldwin・Ryan Simon・鏑木菜保子	2	170
	バイオとデジタルの融合 人の制御を超えたバイオ生産マネジメントにおける AI の活用	藤田朋宏・笠原 堅	2	174
	平成 31 年度各省バイオ関連予算案		2	178
	ゲノムデータの爆発と情報インフラ整備の緊急性	鈴木 穣	3	258
	地域産業支援機関の活動④ 大阪のライフサイエンス産業の発展 をめざして	野村和秀	3	262
	地域産業支援機関の活動⑤ 横浜・神奈川地域におけるバイオ産 業・生命科学の振興を目指す公益財団の取組み	鈴木榮一郎	4	321
	バイオ戦略 2019 について	森 幸子・服部 正	5	393
	地域産業支援機関の活動⑥ 福岡バイオバレープロジェクトの取組み	藤田和博	5	398
	地域産業支援機関の活動② 医療機関を中核にしたファルマバレープロジェクト	植田勝智	6	488
	医療・バイオ等の分野における IOT 関連技術または AI 関連技術を利用した発明に関する特許実務と考察	池上美穂	6	493
国際動向	シリーズ:グローバル連携⑨ ドイツのバイオテクノロジー産業の概況、公的支援およびエコシステム	橋□ 恵	1	60
	バイオエコノミー社会におけるバイオマス利用の動向	柴田大輔	1	64
	生物多様性条約第 14 回締約国会議(COP14)およびその議定書会合への参加報告	小山直人・井上 歩・ 野崎恵子	2	152
	BioProcess International Asia 2019 参加報告	渡邊正人	5	415
	シリーズ:グローバル連携⑩ マレーシア・バイオ産業における 機会	Riduan Rahman	5	417
	欧州エコシステム調査	塚本芳昭	6	481
特 集	< NEDO スマートセルプロジェクト>			
	生物で工業材料を生産するスマートセルインダストリー	金田晃一	4	332
	長鎖 DNA 合成・解析技術の開発 DBTL サイクルに即した長鎖 DNA 構築技術の開発	柘植謙爾・寺井悟朗・ 谷内江望	5	408
	メタボローム解析技術開発 スマートセル開発に資するメタボロミクス技術	蓮沼誠久	5	410
	自家蛍光顕微鏡技術の開発 非破壊イメージングによるハイス ループット細胞評価技術	八幡志央美・野村暢彦・ 八幡 穣	6	512
	高精度定量ターゲットプロテオーム解析技術の開発 複数酵素 タンパク質発現量の一斉定量技術の開発	松田史生	6	514
	メタボライトセンサ構築技術 スマートセル開発のためのメタ ボライトセンサ製作技術	関 貴洋・小林一幾・ 梅野太輔	6	516

	Title	Writer name	No.	Page
特 集	<第2回バイオインダストリー奨励賞受賞業績>			
	ヒト多能性幹細胞由来肝細胞と小腸細胞の作製と創薬応用	高山和雄	2	140
	南極産菌類を利用した酪農排水処理技術の開発と酒類醸造への 展開	辻 雅晴	2	142
	リン代謝経路のデザインによる遺伝子組換え生物のバイオセー フティ技術開発	廣田隆一	2	144
	配列制御型ポリエステル生合成系の開発	松本謙一郎	3	252
	腸を起点に形成される免疫環境の理解とヘルスケアへの新展開	國澤 純	3	25
	"エレクトロニクスフリー"で完全合成型の人工膵臓の開発	松元 亮	3	25
	糖鎖プロファイリング技術の開発と再生医療・創薬への応用	舘野浩章	4	32
	がんゲノム医療に向けた単一細胞解析システムの構築	吉野知子	4	32
	ハマウツボ科寄生植物の寄生分子機構解明のための研究基盤の 構築	吉田聡子	4	33
	知的財産委員会活動成果報告 食品パラメータ特許 〜特許異議申立案件の分析を通じて〜	鹿島隆則・瀬戸泰裕・ 堤 浩子・米虫良治・ 若林健司・秋元健吾・ 小山直人・秋元 浩	2	14
	<我が国養殖業の持続可能な展開へ向けて>			
	我が国養殖業の持続可能な展開へ向けて	伊藤文成・和田時夫	5	40
	養殖業における環境管理と疾病防除	乙竹 充・坂見知子	6	50
	<糖鎖研究から創薬への挑戦>			
	特集を組むにあたって	岸本利光	5	41
	次世代治療・診断実現のための創薬基盤技術開発事業 ―糖鎖 利用による革新的創薬技術開発事業―について	渡部清美	5	41
	糖鎖研究から創薬への挑戦 病理から見た難治がん克服への展望 と糖鎖研究への期待	坂元亨宇	6	49
	第 3 回バイオインダストリー大賞 受賞者インタビュー	田中雅治	6	50
	第3回バイオインダストリー奨励賞 受賞者コメント	E 1 32/3	6	50
	and the control of th			- 00
幾構紹介	アグリゲノム産業研究会 一アカデミアと産業界の交流を目指して一	磯部祥子・岩田洋佳・ 布目 司	1	7
	一般社団法人日本スポーツ栄養協会発足 スポーツ栄養普及推 進の意義	鈴木志保子	3	26
	ビジネス視点でみる「湘南ヘルスイノベーションパーク」最前線 〜湘南を世界のホットスポットにする!〜	久野孝稔	3	27
	「AMED ぷらっと®」のご紹介 ―オープンイノベーションの促進を目指して―	岩谷一臣	4	33
	所有から共用へ:分子・物質合成プラットフォームの紹介	箕輪貴司	5	42
	食と農免疫国際教育研究センター —薬に頼らない農畜水産物の健全育成を目指して—	米山 裕	6	51
	生物資源データプラットフォームのご紹介	市川夏子	6	52

	Title	Writer name	No.	Page
書評	翻訳版 Agricultural Bioinformatics オミクスデータと ICT の統合	中川 智	4	303
	天然物化学	濱野吉十	4	344
JBA	BioJapan 2018/再生医療 JAPAN 2018		1	81
ニュース	第2回バイオインダストリー大賞、バイオインダストリー奨励 賞 表彰式・記念講演会を開催		1	88
	バイオエンジニアリング研究会 中外製薬工業㈱ 浮間工場 バイオ医薬品原薬製造プラント (UK3) 見学会	松野哲巌	1	92
	植物バイオ研究会活動報告	柴田大輔	1	94
	JBA の「バイオベンチャーダイレクトリー」の紹介 〜国内バイオ産業のオープンイノベーション支援プラットフォームを目指して〜	鈴木伸之	1	96
	JBA 発酵と代謝研究会 平成 30 年度第1回勉強会	上田賢志	1	99
	アルコール・バイオマス研究会主催シンポジウム 地域バイオマス 利活用の新たな展開	矢追克郎	2	197
	新資源生物変換研究会シンポジウム スマートセル開発のためのバイオ技術とデジタル技術の革新と融合 バイオ生産に資する DBTL サイクルの構築に向けて	向山正治・近藤昭彦	2	199
	平成 31 年バイオ関連団体合同賀詞交歓会		2	202
	平成 30 年度全国バイオ関係者会議の活動状況について		2	203
	JBA "未来へのバイオ技術"勉強会 Virginijus Siksnys 教授 特別 講演会 CRISPR-Cas:from antiviral defense to genome editing		3	275
	バイオエンジニアリング研究会 2018 年度公開講演会 「バイオ×デジタル(AI・IoT)」 ~バイオ産業におけるデジタルトランスフォーメーション~	森田直樹	3	276
	発酵と代謝研究会シンポジウム 「人のインサイド空間に迫る〜 Society5.0+が実現するヒューマンサスティナブルシステム〜」	荒 勝俊	3	278
	発酵と代謝研究会・第2回勉強会 「ゲノム編集・セルフクローニング育種の課題を考える」		3	280
	新資源生物変換研究会シンポジウム 『農芸化学』でバイオエコノ ミーを支え、拓く	上野嘉之・東田英毅	4	338
	バイオインダストリー奨励賞受賞者企画セミナー 「もう一つの 臓器、腸内細菌叢の機能に迫る」		4	340
	LCA 計算とバイオエコノミーに関する勉強会とりまとめ報告		4	342
	JBA 研究会紹介 機能性食品研究会		5	425
	JBA 研究会紹介 ヘルスケア研究会		6	524
	JBA バイオリーダーズ研修 2019		6	525
	植物バイオ研究会 「アジアでのバイオマス生産」講演会		6	528
	アルコール・バイオマス研究会 積水化学工業㈱パイロットプラント見学会		6	529
	発酵と代謝研究会 「微生物エコシステムの理解と利用」勉強会		6	530
	バイオエンジニアリング研究会 カルティベクス工場見学会	加納健二郎	6	531
	バイオエンジニアリング研究会講演会 〜バイオ医薬品における連 続生産の現状と課題〜		6	533